The Nile on eBay Introduction to Topological Manifolds by John Lee
This book is an introduction to manifolds at the beginning graduate level. The author's book Introduction to Smooth Manifolds is meant to act as a sequel to this book.
FORMATPaperback LANGUAGEEnglish CONDITIONBrand New Publisher Description
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition.Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.This text is designed to be used for an introductory graduate course on the geometry and topology of manifolds. It should be accessible to any student who has completed a solid undergraduate degree in mathematics. The author's book Introduction to Smooth Manifolds is meant to act as a sequel to this book.
Notes
This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields.Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.
Back Cover
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness. This text is designed to be used for an introductory graduate course on the geometry and topology of manifolds. It should be accessible to any student who has completed a solid undergraduate degree in mathematics. The author's book Introduction to Smooth Manifolds is meant to act as a sequel to this book.
Author Biography
John M. Lee is a professor of mathematics at the University of Washington. His previous Springer textbooks in the Graduate Texts in Mathematics series include the first edition of Introduction to Topological Manifolds, Introduction to Smooth Manifolds, and Riemannian Manifolds: An Introduction.
Table of Contents
Preface.- 1 Introduction.- 2 Topological Spaces.- 3 New Spaces from Old.- 4 Connectedness and Compactness.- 5 Cell Complexes.- 6 Compact Surfaces.- 7 Homotopy and the Fundamental Group.- 8 The Circle.- 9 Some Group Theory.- 10 The Seifert-Van Kampen Theorem.- 11 Covering Maps.- 12 Group Actions and Covering Maps.- 13 Homology.- Appendix A: Review of Set Theory.- Appendix B: Review of Metric Spaces.- Appendix C: Review of Group Theory.- References.- Notation Index.- Subject Index.
Review
From the reviews of the second edition:"An excellent introduction to both point-set and algebraic topology at the early-graduate level, using manifolds as a primary source of examples and motivation. … The author has … fulfilled his objective of integrating a study of manifolds into an introductory course in general and algebraic topology. This text is well-organized and clearly written, with a good blend of motivational discussion and mathematical rigor. … Any student who has gone through this book should be well-prepared to pursue the study of differential geometry … ." (Mark Hunacek, The Mathematical Association of America, March, 2011)"This book is designed for first year graduate students as an introduction to the topology of manifolds. … The book can be read with advantage by any graduate student with a good undergraduate background, and indeed by many upper class undergraduates. It can be used for self study or as a text book for a fine geometrically flavored introduction to manifolds. One which provides excellent motivation for studying the machinery needed for more advanced work." (Jonathan Hodgson, Zentralblatt MATH, Vol. 1209, 2011)
Long Description
This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness. This text is designed to be used for an introductory graduate course on the geometry and topology of manifolds. It should be accessible to any student who has completed a solid undergraduate degree in mathematics. The author's book Introduction to Smooth Manifolds is meant to act as a sequel to this book.
Review Quote
From the reviews of the second edition:An excellent introduction to both point-set and algebraic topology at the early-graduate level, using manifolds as a primary source of examples and motivation. … The author has … fulfilled his objective of integrating a study of manifolds into an introductory course in general and algebraic topology. This text is well-organized and clearly written, with a good blend of motivational discussion and mathematical rigor. … Any student who has gone through this book should be well-prepared to pursue the study of differential geometry … . (Mark Hunacek, The Mathematical Association of America, March, 2011)
Feature
New edition extensively revised and updated New introduction to CW complexes (along with a brief and streamlined introduction to simplicial complexes) Expanded treatments of manifolds with boundary, local compactness, group actions, proper maps, and a new section on paracompactness
Description for Sales People
This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.
Details ISBN1461427908 Author John Lee Language English Edition 13002nd ISBN-10 1461427908 ISBN-13 9781461427902 Format Paperback Short Title INTRO TO TOPOLOGICAL MANIFOLDS Series Graduate Texts in Mathematics Media Book Year 2013 Imprint Springer-Verlag New York Inc. Place of Publication New York, NY Country of Publication United States DEWEY 514.34 Publication Date 2013-01-25 Illustrations XVII, 433 p. AU Release Date 2013-01-25 NZ Release Date 2013-01-25 US Release Date 2013-01-25 UK Release Date 2013-01-25 Pages 433 Publisher Springer-Verlag New York Inc. Edition Description Softcover reprint of hardcover 2nd ed. 2011 Alternative 9781441979391 Series Number 940 Audience Professional & Vocational Replaces 9780387950266 We've got this
At The Nile, if you're looking for it, we've got it.With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love!
TheNile_Item_ID:144358987;