The Nile on eBay FREE SHIPPING UK WIDE Introduction to the Theory of Stability by David R. Merkin, F.F. Afagh, A.L. Smirnov
Many books on stability theory of motion have been published in various lan guages, including English. Also, using appropriate examples, he demonstrates the process of investigating the stability of motion from the formulation of a problem and obtaining the differential equations of perturbed motion to complete analysis and recommendations.
FORMATPaperback LANGUAGEEnglish CONDITIONBrand New Publisher Description
Many books on stability theory of motion have been published in various lan guages, including English. Most of these are comprehensive monographs, with each one devoted to a separate complicated issue of the theory. Generally, the examples included in such books are very interesting from the point of view of mathematics, without necessarily having much practical value. Usually, they are written using complicated mathematical language, so that except in rare cases, their content becomes incomprehensible to engineers, researchers, students, and sometimes even to professors at technical universities. The present book deals only with those issues of stability of motion that most often are encountered in the solution of scientific and technical problems. This allows the author to explain the theory in a simple but rigorous manner without going into minute details that would be of interest only to specialists. Also, using appropriate examples, he demonstrates the process of investigating the stability of motion from the formulation of a problem and obtaining the differential equations of perturbed motion to complete analysis and recommendations. About one fourth of the examples are from various areas of science and technology. Moreover, some of the examples and the problems have an independent value in that they could be applicable to the design of various mechanisms and devices. The present translation is based on the third Russian edition of 1987.
Notes
Springer Book Archives
Table of Contents
1 Formulation of the Problem.- 1.1 Basic Definitions.- 1.2 Equations of Perturbed Motion.- 1.3 Examples of Derivation of Equations of a Perturbed Motion.- 1.4 Problems.- 2 The Direct Liapunov Method. Autonomous Systems.- 2.1 Liapunov Functions. Sylvester's Criterion.- 2.2 Liapunov's Theorem of Motion Stability.- 2.3 Theorems of Asymptotic Stability.- 2.4 Motion Instability Theorems.- 2.5 Methods of Obtaining Liapunov Functions.- 2.6 Application of Liapunov's Theorem.- 2.7 Application of Stability Theorems.- 2.8 Problems.- 3 Stability of Equilibrium States and Stationary Motions of Conservative Systems.- 3.1 Lagrange's Theorem.- 3.2 Invertibility of Lagrange's Theorem.- 3.3 Cyclic Coordinates. The Routh Transform.- 3.4 Stationary Motion and Its Stability Conditions.- 3.5 Examples.- 3.6 Problems.- 4 Stability in First Approximation.- 4.1 Formulation of the Problem.- 4.2 Preliminary Remarks.- 4.3 Main Theorems of Stability in First Approximation.- 4.4 Hurwitz's Criterion.- 4.5 Examples.-4.6 Problems.- 5 Stability of Linear Autonomous Systems.- 5.1 Introduction.- 5.2 Matrices and Basic Matrix Operations.- 5.3 Elementary Divisors.- 5.4 Autonomous Linear Systems.- 5.5 Problems.- 6 The Effect of Force Type on Stability of Motion.- 6.1 Introduction.- 6.2 Classification of Forces.- 6.3 Formulation of the Problem.- 6.4 The Stability Coefficients.- 6.5 The Effect of Gyroscopic and Dissipative Forces.- 6.6 Application of the Thomson-Tait-Chetaev Theorems.- 6.7 Stability Under Gyroscopic and Dissipative Forces.- 6.8 The Effect of Nonconservative Positional Forces.- 6.9 Stability in Systems with Nonconservative Forces.- 6.10 Problems.- 7 The Stability of Nonautonomous Systems.- 7.1 Liapunov Functions and Sylvester Criterion.- 7.2 The Main Theorems of the Direct Method.- 7.3 Examples of Constructing Liapunov Functions.- 7.4 System with Nonlinear Stiffness.- 7.5 Systems with Periodic Coefficients.- 7.6 Stability of Solutions of Mathieu-Hill Equations.- 7.7 Examples of Stability Analysis.- 7.8 Problems.- 8 Application of the Direct Method of Liapunov to the Investigation of Automatic Control Systems.- 8.1 Introduction.- 8.2 Differential Equations of Perturbed Motion of Automatic Control Systems.- 8.3 Canonical Equations of Perturbed Motion of Control Systems.- 8.4 Constructing Liapunov Functions.- 8.5 Conditions of Absolute Stability.- 9 The Frequency Method of Stability Analysis.- 9.1 Introduction.- 9.2 Transfer Functions and Frequency Characteristics.- 9.3 The Nyquist Stability Criterion for a Linear System.- 9.4 Stability of Continuously Nonlinear Systems.- 9.5 Examples.- 9.6 Problems.- References.
Promotional
Springer Book Archives
Long Description
Many books on stability theory of motion have been published in various lan
Details ISBN1461284775 Author A.L. Smirnov Short Title INTRO TO THE THEORY OF STABILI Series Texts in Applied Mathematics Language English ISBN-10 1461284775 ISBN-13 9781461284772 Media Book Format Paperback DEWEY 531.3 Series Number 24 Edition 96199th Pages 320 Year 2011 Translator F.F. Afagh Publication Date 2011-09-17 Imprint Springer-Verlag New York Inc. Place of Publication New York, NY Country of Publication United States UK Release Date 2011-09-17 AU Release Date 2011-09-17 NZ Release Date 2011-09-17 US Release Date 2011-09-17 Illustrations XX, 320 p. Edited by A.L. Smirnov Publisher Springer-Verlag New York Inc. Edition Description Softcover reprint of the original 1st ed. 1997 Alternative 9780387947617 Audience Professional & Vocational We've got this
At The Nile, if you're looking for it, we've got it.With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love!
30 DAY RETURN POLICY
No questions asked, 30 day returns!
FREE DELIVERY
No matter where you are in the UK, delivery is free.
SECURE PAYMENT
Peace of mind by paying through PayPal and eBay Buyer Protection TheNile_Item_ID:143691504;